A symmetric Trefftz-DG formulation based on a local boundary element method for the solution of the Helmholtz equation

نویسندگان

  • Helene Barucq
  • Abderrahmane Bendali
  • M'Barek Fares
  • V. Mattesi
  • Sébastien Tordeux
چکیده

A general symmetric Trefftz Discontinuous Galerkin method is built for solving the Helmholtz equation with piecewise constant coefficients. The construction of the corresponding local solutions to the Helmholtz equation is based on a boundary element method. A series of numerical experiments displays an excellent stability of the method relatively to the penalty parameters, and more importantly its outstanding ability to reduce the instabilities known as the “pollution effect” in the literature on numerical simulations of long-range wave propagation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method

This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

We derive and analyze new boundary element (BE) based finite element discretizations of potential-type, Helmholtz and Maxwell equations on arbitrary polygonal and polyhedral meshes. The starting point of this discretization technique is the symmetric BE Domain Decomposition Method (DDM), where the subdomains are the finite elements. This can be interpreted as a local Trefftz method that uses PD...

متن کامل

A truly meshless method formulation for analysis of non-Fourier heat conduction in solids

The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...

متن کامل

Aspects of Trefftz’ Method in BEM and FEM and their coupling

In both boundary element methods and Trefftz-type finite element methods a partial differential equation in some domain is treated by solving a discrete problem on the boundary of the domain and possibly the boundaries between subdomains. We consider a Trefftz element formulation which is based on the complementary energy functional, and we compare different regularizations of the interelement ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 330  شماره 

صفحات  -

تاریخ انتشار 2017